If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5j^2+5j+1=0
a = 5; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·5·1
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{5}}{2*5}=\frac{-5-\sqrt{5}}{10} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{5}}{2*5}=\frac{-5+\sqrt{5}}{10} $
| -0.25x2+1.5=-10.75 | | x^2+(x+3)^2=185 | | 0=7(5x-1)-168 | | -10c+6c+9=-19 | | 2x+32=(2/9)x | | 3n-17=13 | | 14=3(x-2)+(x-8) | | x+17-3x=21-2x | | 5x-8x+20=-10 | | 23=3+4x | | 32x-32=-5x-32 | | 4x=2x+1- | | 14-m=-8 | | 4*35=14(35-7x+14) | | x2=-3x2+64 | | (x+3)*4-(2-x)=0 | | 5=3x=5x-19 | | 5(2x-3)-4=5(x-2)+36 | | 2/5x+1/2=4/5x+3/10 | | 4=-12/r | | -36+6x=30-5x | | 8x2-36=-x2 | | 145=2x+10+4x-3 | | 2x-5=4x4+5 | | 8x-42=14x | | (6x-2)=(3x+7) | | 35-(x+6)=23 | | 19m-18m=17 | | -x/4=1/7 | | 4n-5=-25+9n | | |2c+8|=-|10c| | | 7x-(6x+8)=2x-45 |